Failure Is Not an Option Read online

Page 10


  There was, of course, a remarkable sequel to Glenn’s flight. He retired from the astronaut corps to run for the Senate, withdrawing once after an accident, losing a second race to big money, and getting elected on his third try. No one ever accused John Glenn of being a quitter. He served in the Senate, representing Ohio, then retired after four terms. Thirty-six years after he had made space history he flew again, this time on the Space Shuttle in October 1998. His second flight helped close the chapters in history books that cover the first four decades of America’s space program.

  4

  THE BROTHERHOOD

  Langley Air Force Base, Virginia

  By the time of John Glenn’s flight, time was our greatest enemy at NASA. We had to move ahead as quickly as possible because of President Kennedy’s pledge to land a man on the Moon in the 1960s; we also knew that nasty surprises awaited us at every stage in development, no matter how hard we tried to anticipate the most remote contingencies.

  Deke Slayton had been selected to fly the second orbital Mercury mission. I had quickly updated the rules based on the Glenn mission and, with the flight planners, was set to give Deke an advance look at the flight rules and the five experiments that had been added. The same scientists who had believed a man’s performance in space would be severely degraded by zero gravity and other factors were now eager to have astronauts perform as many experiments as possible, within the limits of a three-orbit mission. Deke had heard the experiments were coming and voiced his well-founded objections to anyone who would listen. I believed he was right to do so. With only three orbits’ worth of manned experience, most, if not all, of the team felt it was too soon to distract the astronaut with tethered balloons, fluid studies, and a variety of other observations.

  I was pulling together a one-page cheat sheet for Slayton on the flight rules, when the word came down that he would be replaced by Scott Carpenter. This news shocked us all, although not nearly as much as it did Deke. I assumed the switch was because he had raised hell about all the added experiments.

  But it turned out that Slayton had been scratched because of an irregular heartbeat. The problem, known as idiopathic atrial fibrillation, had been noted when Deke was being tested on the centrifuge (which simulated increased gravity and other stress factors). After an analysis of his data by NASA and Air Force specialists, he was accepted for flight. When it was his turn to fly, the NASA Administrator, James Webb, had his records reviewed for a final time. Three different groups of medical specialists gave their okay—then Webb got three civilian cardiologists from Georgetown University, Washington Hospital Center, and the National Institutes of Health to review his records and give him a brief exam. They recommended his removal from flight status. Moral: if you ask enough people, you’ll find someone who will disagree with the majority and give those nervous about risk a way out. No one doubted Deke’s heart when he was one of the hot test pilots at Edwards Air Force Base, pushing the F-105 to its limits.

  Slayton didn’t quit the program. Few expected that he would. His initial assignment placed him as coordinator of the astronaut corps, and his first task involved the selection of the second class of astronauts. In October 1963 he was named the deputy for flight operations, putting him in charge of just about everything that concerned his fellow astronauts. It was a legitimate job and a big one, but you could not avoid suspecting that Deke had been given a consolation prize.

  In the trenches at Mercury Control, we probably felt the strongest empathy for him, and for the time and energy he had spent training for a day that was now gone from the calendar and might never come again. He would be cleared ten years later and would finally make it into space as part of NASA’s joint venture with the Russians. But for now, he was the first of the Mercury astronauts to be washed out, and the controllers could not view that setback with indifference.

  Scott Carpenter, the backup for Glenn’s mission, was a virtual unknown to most of the controllers. When Scott was given the nod, we were surprised because we had been expecting Wally Schirra, Slayton’s backup, to replace Deke. The mission was rescheduled to accommodate the change in crewman, and additional attitude control tests were added to the flight plan. Glenn’s mission had finally cleared the way for astronauts having hands-on control of the spacecraft in flight. John had not experienced any disorientation, and his troubleshooting of the attitude control problems demonstrated the value of having a human in control of the spacecraft at critical moments. Carpenter’s flight plan was expanded to permit him to perform maneuvers to observe sunrise and sunset, fly upside down to test pilot disorientation, and conduct visual observations of Earth and space phenomena.

  We had reached another milestone; two teams were working in concert, more or less, the man in the capsule and the crews in the control room. Both sides were—understandably—a little wary of the scientists.

  Now the earthbound Slayton had nearly as much in common with our Flight Control team as his own astronaut corps. We in Mercury Control were like the second-string team in football, who scrimmaged all week and took the banging, but didn’t get to make the road trips. Each time a rocket lifted off the pad, we felt pride and elation . . . and a little envy.

  We did not mingle socially with the astronauts. Even if that had seemed a desirable thing to do, none of us had the time. When the astronauts were not in nearly nonstop training, they were flying or racing their sports cars or making public appearances to promote the space program. But as our Mercury Control team acquired as much, if not more, knowledge about the spacecraft as those who would fly them, each mission brought both sides closer together in mutual confidence—and we felt a more personal link with the crews.

  The first Mercury orbital mission had been at the core of our lives in the winter of 1961. Now, in the early months of 1962, Gilruth’s newly designated Manned Spacecraft Center was moving to Houston amid a massive reorganization. This new NASA center was charged with the design, development, and flight operations for the newly formed Gemini and Apollo programs. In July 1960 NASA had announced plans to follow Mercury with a program to fly to the Moon. The program was subsequently called Apollo. The Gemini Program, which started in 1961, would bridge the technology gap between the Mercury missions and the far more ambitious Apollo lunar program. In 1962 the MSC was in a period of unprecedented growth and change. It departed the Langley Field facilities with a staff of 750. With the staff more than doubling each year it would increase to 6,000 at the beginning of Gemini operations in 1964. This rapid growth necessitated corresponding changes in the Flight Operations Division. Chuck Mathews, the FOD division chief, was reassigned by Gilruth to form a Spacecraft Research Division to develop the design requirements and the technologies needed for the Gemini and Apollo spacecraft. Chris Kraft replaced Mathews as the FOD chief. John Hodge, the Bermuda flight director, then formed a Flight Control Operations Branch. This branch had the responsibility for the mission rules development and the remote site teams and the MCC systems controllers. Hodge selected me as deputy chief. My role as his deputy did not last long. Two months later Kraft selected Hodge as his assistant, and I became the branch chief for Flight Control Operations. I now had the resources I needed to develop an operations team that was fully capable of taking any actions needed during the course of a mission.

  As we were preparing for Carpenter’s flight, Chris Kraft relocated to his temporary offices at the Houston Petroleum Center on the Gulf Freeway. His staff, however, remained at Langley, starting their relocation in the summer of 1962, during the interval between the flights now assigned to Carpenter and Schirra. Many drove with their families from Virginia to Cape Canaveral for Carpenter’s flight, towing rental trailers containing all they possessed. After the mission, they continued on to Houston.

  As the space program was rapidly expanding, more land was needed to house people and test the systems being developed. In and around Houston, we had access to water—in the Gulf of Mexico and even at Clear Lake—so we could do drop-testing of
the capsules. A key factor in determining the new site was the proximity of colleges and universities, a talent pool from which we could recruit newly graduated engineers and scientists for the rapidly expanding program. (It should also be noted that Houston was in the congressional district of Albert Thomas, the chairman of the House Appropriations Subcommittee that oversaw NASA’s budget. He and Vice President Johnson were loyal sons of Texas and highly effective advocates for Houston’s suitability as the location for the new Manned Spacecraft Center.)

  As a result, in the early years of space, many of my controllers were out of educational institutions in Texas and the Southwest, not the colleges in the Northeast that supplied many of those in the original Space Task Group. We had a few from as far north as Purdue, but they came in waves off the campuses of Texas A&M, the University of Texas, Rice University, and Lamar Tech (in nearby Beaumont).

  Tec Roberts, already in Houston, was designing the new Mission Control Center for Gemini and Apollo. Glynn Lunney had stepped in as his replacement as the flight dynamics officer for the remaining Mercury missions. Glynn was the pioneer leader of trajectory operations, who turned his craft from an art practiced by few into a pure science. In the early years, I envied him for his ability to rapidly absorb complex materials and find alternatives. We competed for the leadership role, Glynn pointing the way through his remarkable grasp of the entire complex picture, while I focused on structure and team building.

  Carl Huss, one of our math wizards, was training the remote site controller John Llewellyn as his replacement, and Arnold Aldrich was brought in from remote site systems to relieve Walt Kapryan at the systems console. Eighteen months after our first baby step into the world of space flight, the Mercury pioneers were sliding into new jobs and their successors were entering the fray.

  In the midst of the preparation for the launch of Carpenter’s Aurora 7 mission, we were advised to take a trip to find housing for our families. We would be given thirty dollars per diem for thirty days for all expenses. By the time the allowance ran out we had to be relocated.

  Manfred (Dutch) Von Ehrenfried was a new recruit who joined us as a procedures officer in time for the Glenn mission. He had been teaching high school physics when President Kennedy set the lunar goal and was itching for a piece of the action. Trying to avoid an unnecessary trip to Houston, I called him into my office and decided to give him a real test.

  “Dutch, we have to get settled quickly in Houston,” I advised him. “We need good, cheap housing with low down payments. Scout around and find the best place to live. We can’t afford more than a $250 down payment.”

  Dutch did not own a home in Virginia and was as eager as any of us to get his family resettled. He did well as a real estate scout and, during the interval between missions, ten families moved into houses he picked out on Welk and Regal drives, an area in southeast Houston that came to be known in the early 1960s as Flight Controller Alley.

  March 1962

  President Kennedy had challenged us to go to the Moon and dispel any doubts of America’s leadership, technology, and spirit. The colleges and universities responded. By the spring of 1962, we were flooded with job applications from a generation of young people drawn to the cause.

  The newly created Manned Spacecraft Center more than doubled in size, from 750 staffers to 1,800, in three months. Mel Brooks and Jim Hannigan were the first two engineers I hired. Slightly older than the average controller, they had the savvy I needed to lead the young graduates through Mercury and into Gemini.

  Hannigan had been a flight test engineer for the Air Force. Brooks, an infantry veteran of the Korean War, had worked with the satellite control of the Air Force’s Agena upper-stage rocket, which had been selected as the Gemini rendezvous target. They were the first to relocate to Flight Controller Alley and were pressed immediately into service. Hannigan was selected as a CapCom assigned to the Kano, Nigeria, site, while Brooks led the training section for the final Mercury missions.

  The training classes set up by the Philco monitors were expanded and structured to accommodate the new college graduates being recruited as flight controllers. The two-week, twelve-hour-a-day training program was a crash course in remote site flight control, providing only the most basic background for the work. At the completion of their twelve-hour day, the controllers practiced their Morse code, the last, desperate fall-back for communicating. The astronauts and controllers were trained to use their mike switch to transmit the code. Then, when Morse code training was completed, they were taught speed printing so that their Teletype messages might get to the next controller’s site before the spacecraft. This first formal flight controller training session was designated Class 101. I passed out the certificates to the first six graduates, one of whom was Charles (Skinny) Lewis.

  One month after graduating from Class 101 and getting a crash training course, Lewis and his team were sent out to man our remote (and boy, was it remote) site in Zanzibar, the same site where John Llewellyn and his guys had earlier been surrounded by local citizens engaged in “civil disorder” (i.e., rioting). Like many of his fellow accidental tourists, Lewis had never been out of the country before and now was in a place where his military training as a tank commander in the Army Reserve came in handy. Having been briefed on the dangerous conditions in the area, Lewis, along with his surgeon and his systems controller, was returning from the site to his quarters late one night when he saw a roadblock made up of fires burning in oil drums and manned by natives not in uniform. He floored the gas and drove his Volkswagen right through a gap in the blazing obstruction. He survived that and other adventures to eventually become an Apollo flight director.

  May 24, 1962, Mercury-Atlas 7

  The launch preparation for Scott Carpenter’s mission unfolded with the usual glitches that we had come to expect. We used three launch scrubs wisely in local training. I updated the procedures and flight rules for the next mission, reviewing them with Kraft, the controllers, and the astronauts during slack periods at the Cape. Because of the relocation of our operations to Houston, we lost almost a month of preparation time and we had to get ahead of the power curve. But finally the day came when we were ready to light the fire on Mercury-Atlas 7. (The Mercury spacecraft were given names by the astronauts, but the Mercury-Atlas or Mercury-Redstone designation was used by the launch and flight teams. The word “flight” referred to the spacecraft and booster events from liftoff to landing in the Mercury program. During the Gemini and Apollo programs, the term “mission” was used by the program, launch, and mission teams. “Mission” carried the collective connotation needed when dealing with two or more spacecraft or launch vehicles. Although this was the standard, the terms “mission” and “flight” were often used interchangeably.)

  The launch day countdown moved along smartly with few glitches. If you counted orbits, the teams were virtually doubling their experience with each mission. The cumulative lessons of the missions and the training were bringing the controllers to instant adulthood, but as soon as one group made it they moved into new jobs in the rapidly expanding organization and another new team took their place.

  In the design of Mercury Control a spare console was located to the left of the flight director. The console was assigned to an assistant flight director (AFD) and the Mercury Control Center procedures manual stated that “The AFD is responsible to the Flight Director for assistance in the detailed control of the mission, and assumes the duties of the Flight Director in his absence.” During the early missions no individual had been designated to that position and the console was primarily used during training by the simulation supervisor, SimSup, or a member of his team. At the conclusion of the training for Scott Carpenter’s flight, Kraft walked over to me at the console saying, “You’ve trained Dutch [Von Ehrenfried] well, and I think he is ready to go at the procedures console. I’d like you to sit here next to me from now on.” Having become Kraft’s assistant flight director, I had to figure out what this new job sho
uld cover. In Kraft’s traditional fashion, while he allowed us to develop our own unique style and identity, he was cloning his team with a common genetic code. On that day I started along the difficult road to becoming a flight director. Kraft’s fire and passion for his work had inspired me just as it had inspired every other member of his team. His cause and his victories were mine, and the emotional content of each day carried into the night. It was impossible to slow down.

  To the right of the control room, Carl Huss coached Llewellyn through the myriad checks designed to prove the integrity of the launch trajectory system. It was fun and somehow reassuring to see the two of them at work. Llewellyn drove Huss crazy at the console during training. Huss, orderly to the point of distraction, spent his time checking and rechecking every step of every procedure. Llewellyn, in contrast, trusted his instincts, and when a procedure was completed, he left it alone. Each night in our Cape motel room at the Holiday Inn, I would listen to Huss critique Llewellyn’s daily performance. Dancing Bear, facing the end of his career as the “World’s First Retro” (retrofire controller), was convinced that John would never succeed in the position he, Carl, had invented.

  Huss, now with real-time trajectory experience under his belt, became a section chief in the Mission Analysis branch, designing lunar trajectories.